

UNIVERSIDADE FEDERAL DE PERNAMBUCO PRÓ-REITORIA PARA ASSUNTOS ACADÊMICOS DIRETORIA DE DESENVOLVIMENTO DO ENSINO

PROGRAMA DE COMPONENTE CURRICULAR

1110011		E com or Entre contin	CCEIII					
TIPO I	DE COM	IPONENTE (Marque um X	na opção)					
Ati	sciplina ividade cor onografia	mplementar		Prática de Ensino Módulo Trabalho de Graduação				1
STATU	J S DO C	COMPONENTE (Marque ur	n X na opçê	ăo)				
X OBRIGATÓRIO				ELETIVO		OPTATIVO		
DADOS	DO CO	MPONENTE						
Código		Nome		Carga Horária Semanal		Nº. de Créditos	C. H. Global	Período
-	İ			Teórica	Prática			
EL 401	Dinâmica de máquinas elétricas			04	00	04	60	8°
Pré-requisitos		Máquinas elétricas	Co-Requisitos			F	Requisitos C.H.	
EMENTA								
		aplicações dos modelos dinâmicos e algoritmos computacionais para				ncronas.		
OBJETIVO) (S) DO (COMPONENTE						
		idante aprenda as principais ferrame o envolvendo o acionamento de máq		lagem e análise de má	iquinas elétricas pa	ira permitir o projeto	e instalação de sist	emas de

METODOLOGIA

AULA	TIPO	HORA	AC	REC	ASSUNTO	REF. BIB.
01	T	02	02		Revisão de máquinas de CC e desenvolvimento das equações básicas	1, 2
02	T+P	02	04	C	Diagrama de blocos; Simulação da máquina de CC em malha aberta	1, 2
03	T	02	06		Controle de geradores CC com excitação independente	1, 2
04	T	02	08		Controle de motores CC com excitação independente	1, 2
05	P	02	10		Solução de exercícios	1, 2
06	P			C	Simulações de controle em malha fechada	1, 2
07	Е	02	12		1º Exame Parcial Escrito	
08	T	02	14		Revisão de máquinas de indução	2, 3
09	T	02	16		Hipóteses simplificadoras e modelagem da MI em componentes abc	3, 4
10	T	02	18		Vetores espaciais – definições; Transformação abc – dq0	3, 4
11	T	02	20		Obtenção das equações vetoriais do modelo eletromagnético	3, 4
12	T	02	22		Obtenção das equações vetoriais do modelo eletromagnético	3, 4
13	T	02	24		Equações de potência e conjugado	3, 4
14	T	02	26		Diagrama de blocos para simulação da MI em MATLAB/SIMULINK	3, 4
15	P	02	28	С	Simulação MI MATLAB/SIMULINK (partida direta + aplicação de carga)	3, 4
16	T	02	30		Obtenção do circuito equivalente de RPS a partir do modelo vetorial	3, 4
17	T	02	32		Transitórios eletromagnéticos a veloc. constante: autovalores do modelo	3, 4
18	T	02	34		Transitórios eletromagnéticos a veloc. constante: curto trifásico	3, 4
19	P	02	38		Exercícios	3, 4
20	Е	02	40		2º Exame Parcial Escrito	
21	T	02	42		Revisão de máquinas síncronas	2, 4, 5
22	T	02	44		Hipóteses simplificadoras e modelagem da MS em componentes abc	2, 4, 5
23	T	02	46		Obtenção das equações vetoriais do modelo eletromagnético	2, 4, 5
24	T	02	48		Equações de potência e conjugado	2, 4, 5
25	T	02	50		Características de operação em regime permanente	2, 4, 5
26	P	02	52		Exemplo de análise de regime transitório: curto-circuito trifásico	2
27	T	02	54		Parâmetros do modelo dq a partir dos dados do fabricante e vice-versa	4

28	P	02	56	С	Simulação de uma máquina síncrona	4, 5
29	P	02	58		Exercícios	2, 4, 5
30	Е	02	60		3° Exame Parcial Escrito	

LEGENDA: (T) Aula Teórica; (P) Aula Prática; (AC) Horas Acumuladas; (E) Exercício Escolar

REC: (R) Retroprojetor; (S) Slide; (VT) Vídeo; (L) Laboratório; (C) Computador; (V) Visita.

AVALIAÇÃO

DATA	TIPO	ASSUNTO
	1º Exame Parcial Escrito	Aulas 1 a 6.
	2º Exame Parcial Escrito	Aulas 8 a19
	2º Exame Parcial Escrito	Aulas 21 a 29

CONTEÚDO PROGRAMÁTICO

- Máquinas de corrente contínua: desenvolvimento das equações básicas, desenvolvimento das funções de transferência e diagramas de blocos, aplicações de controle em malha fechada, efeitos da saturação magnética, desenvolvimento de algoritmos de simulação computacional.
- Máquinas de indução: hipóteses simplificadoras para o desenvolvimento do modelo, equações do modelo eletromagnético em componentes abc e do modelo mecânico, desenvolvimento do modelo vetorial do em referencial genérico (estacionário, síncrono ou fixo no rotor), circuitos equivalentes de regime transitório e de regime permanente, transitórios com velocidade constante: autovalores do modelo eletromagnético, cálculo de curtos trifásicos, desenvolvimento de algoritmos de simulação computacional.
- Máquinas síncronas: hipóteses simplificadoras para o desenvolvimento do modelo, equações do modelo eletromagnético em componentes abc e do modelo mecânico, sistema por unidade, desenvolvimento do modelo dq em referencial síncrono, análise de regime permanente e de regime transitório, obtenção dos parâmetros do modelo a partir dos dados do fabricante, características ângulo-potência: regime permanente x regime transitório, equação de oscilação e critério de igualdade de áreas, desenvolvimento de algoritmos de simulação computacional.

BIBLIOGRAFIA BÁSICA

- V. Del Toro, "Fundamentos de Máquinas Elétricas", Prentice Hall do Brasil, 1994.
- A. E. Fitzgerald and C. Kingsley, "Electric Machinery", 6th. Edition, McGraw Hill.
 T. A. Lipo, and D. W. Novotny, "Vector Control and Dynamics of AC Drives", Clarendon Press, 1996.

BIBLIOGRAFIA COMPLEMENTAR

- C. M. Ong, "Dynamic Simulation of Electric Machinery Using Matlab/Simulink", Prentice Hall PTR, USA, 1998.
- P. Kundur,"Power System Stability and Control". McGraw Hill, 1993.

DEPARTAMENTO A QUE PERTENCE O COMPONENTE	_	HOMOLOGADO PELO COLEGIADO DE CURSO
ASSINATURA DO CHEFE DO DEPARTAMENTO		ASSINATURA DO COORDENADOR DO CURSO OU ÁREA